Inhomogeneous lattice paths, generalized Kostka polynomials and An−1 supernomials

نویسنده

  • Anne Schilling
چکیده

Inhomogeneous lattice paths are introduced as ordered sequences of rectangular Young tableaux thereby generalizing recent work on the Kostka polynomials by Nakayashiki and Yamada and by Lascoux, Leclerc and Thibon. Motivated by these works and by Kashiwara’s theory of crystal bases we define a statistic on paths yielding two novel classes of polynomials. One of these provides a generalization of the Kostka polynomials while the other, which we name the An−1 supernomial, is a q-deformation of the expansion coefficients of products of Schur polynomials. Many well-known results for Kostka polynomials are extended leading to representations of our polynomials in terms of a charge statistic on Littlewood–Richardson tableaux and in terms of fermionic configuration sums. Several identities for the generalized Kostka polynomials and the An−1 supernomials are proven or conjectured. Finally, a connection between the supernomials and Bailey’s lemma is made.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hall-littlewood Vertex Operators and Generalized Kostka Polynomials Mark Shimozono and Mike Zabrocki

Kostka-Folkes polynomials may be considered as coefficients of the formal power series representing the character of certain graded GL(n)-modules. These GL(n)-modules are defined by twisting the coordinate ring of the nullcone by a suitable line bundle [1] and the definition may be generalized by twisting the coordinate ring of any nilpotent conjugacy closure in gl(n) by a suitable vector bundl...

متن کامل

SPACES OF COINVARIANTS AND FUSION PRODUCT II. ŝl2 CHARACTER FORMULAS IN TERMS OF KOSTKA POLYNOMIALS

In this paper, we continue our study of the Hilbert polynomials of coinvariants begun in our previous work [FJKLM] (paper I). We describe the sln fusion products for symmetric tensor representations following the method of [FF], and show that their Hilbert polynomials are An−1-supernomials. We identify the fusion product of arbitrary irreducible sln-modules with the fusion product of their resc...

متن کامل

The Bailey Lemma and Kostka Polynomials

Using the theory of Kostka polynomials, we prove an An−1 version of Bailey’s lemma at integral level. Exploiting a new, conjectural expansion for Kostka numbers, this is then generalized to fractional levels, leading to a new expression for admissible characters of A n−1 and to identities for A-type branching functions.

متن کامل

Ubiquity of Kostka Polynomials

We report about results revolving around Kostka–Foulkes and parabolic Kostka polynomials and their connections with Representation Theory and Combinatorics. It appears that the set of all parabolic Kostka polynomials forms a semigroup, which we call Liskova semigroup. We show that polynomials frequently appearing in Representation Theory and Combinatorics belong to the Liskova semigroup. Among ...

متن کامل

Kostka Polynomials and Energy Functions in Solvable Lattice Models

and Energy Functions in Solvable Lattice Models Atsushi Nakayashiki and Yasuhiko Yamada Graduate School of Mathematics, Kyushu University Abstract The relation between the charge of Lascoux-Schuzenberger and the energy function in solvable lattice models is clari ed. As an application, A.N.Kirillov's conjecture on the expression of the branching coe cient of c sln=sln as a limit of Kostka polyn...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999